CSE525 Lec17 Reduction

Debajyoti Bera (M21)

def $\operatorname{MOBBPATHs}(G, s, t)$:
\rightarrow answer is yes
Mod3Path $\left(H, s^{\prime}, t^{\prime}\right) \leftarrow \operatorname{Reduce}(G, s, t) \quad \rightarrow$ Input is a Yes instance the
 If $s^{\prime} H_{s} \rightarrow t^{\prime}$, retum yes Decision problem L Lranswer is $\mathrm{No} /$ aec. Given a graph G and two vertices s and t, is there a path from $s \sim t$ of length divisible by 3 ? be retum no
def Reduce(G, s, t):
H : for every $v \in G$, add $(v, \sigma),(v, 1)$, $(V, 2)$ to H
// construct and return ($\mathrm{H}, \mathrm{s}^{\prime}, \mathrm{t}^{\prime}$) such that ... add edges (see tutorial notes)
Reduction
// ($\mathrm{G}, \mathrm{s}, \mathrm{t}$) is a YES instance of Mod3Path of $\left(H, s^{\prime}, \mathrm{t}^{\prime}\right)$ is a YES instance of REACHability

$$
\text { REACH }\left(H, S^{\prime}, t^{\prime}\right) \text { : Yes if } S^{\prime} m t^{\prime} \text { in } H
$$

Graph, two vertices \rightarrow Yes/ No
No if no such path

- Input and output of Mod3Path ?
- Input and output of Reduce? input: instance of MOSSPATH (Graph q two vertices)
- Time complexity of "reduction"? "utpont:" " REACA (Graph +" ")
L in terms of input to reduce

Reduction (for decision problems)

```
decision
```

$P(\mathrm{P}$: (many-one polynomial-time) reduction of problem P to decision Q

- An algorithm to convert any instance/input X of P to an instance/input Y of Q
- Running time of reduction algorithm : poly(size of X)
- $P(X)$ returns True af $\mathrm{Q}(\mathrm{Y})$ returns True Reduction lemma
X is a Yes instance of P iff
$Y=$ Reduce (X) is a Yes instance of Q. Not about algorithm for solving $P(X)$
def Reduce $(A[1 \cdots n])$: retum $\{(1,0)<(2,0),(3,0)\}$

3SUM reduces to Collinearity

3SUM: Given array A of integers, does it contain $\mathrm{a}, \mathrm{b}, \mathrm{c}$ whose sum is zero? COLLINEARITY: Given a set of points in 2D, does it contain 3 points which lie on same line?

$$
3 S \cup M \leqslant \operatorname{COLL}
$$

Instance of 3SUM: Array A of integers Instance of ColL: set of $2 D$ points def 3SUMtoCOLL-Tryl(A):

aholds Return $S=\{(x, 1): x$ in $A\}$ (5) Take $A=[1,2,3] S=\{(1,1),(2,1)(3,1)) x$
a If A has aksuM solution then S has 3 coll. points. A has a 3 SUM solution eff $\mathrm{S}=$ Reduce (A) has 3 collinear points. Is this true?

$$
\begin{aligned}
& \text { Reduce }(1,2 ; 3]) \rightarrow\{(1,0),(2,0),(3,0)\} \text { (a) is satisfied (Fare } \Rightarrow \text { True) } \\
& \text { (1) (The } \Rightarrow \text { Fable) is not -Satisfied }
\end{aligned}
$$

3SUM reduces to Collinearity

3SUM: Given array A of integers, does it contain a,b,c whose sum is zero? COLLINEARITY: Given a set of points in 2D, does it contain 3 points which lie on same line?

Instance of 3SUM: Array A of integers
def 3SUMtoCOLL(A):
Return $S=\{(x, x): x$ in $A\}$
(a) S is always collinear, \therefore It will be coll even when (1.) Doesnot hold $A=[1,2,3] \quad S=0$ had a 3 is um solution (6) Doesnot hold. $A=[1,2,3] \quad S=$ Reduce $(A)=\{(1,1)$, A has a 3 SUM solution ff $S=$ Reduce (A) has 3 collinear points. Is this true? $(2,2),(3,3)$ S has 3 coll. points but A has no $b s u M$ sol.
(a) Take any A with a valid 3 SUM solution. $\exists a, b, c \in A$ \& $a+b+c>0$
S has the points $\left(a_{c} a_{p}^{3}\right),\left(b_{p 2} b^{3}\right), \underset{p 3}{\left(c_{1} c^{3}\right)}$
def 3SUMtoCOLL(A):
Return $\mathrm{S}=\left\{\left(\mathrm{x}, \mathrm{x}^{3}\right): \mathrm{x}\right.$ in A$\}$
Ex. Prove $\frac{b^{3}-a^{3}}{b-a}=\frac{b^{3}-c^{3}}{b-c}$ when $a+b+c=0$
that
A has a 3 SUM solution of $S=$ Reduce (A) has 3 collinear points. Is this true?
(b) Take any A $8, ~ S=\operatorname{Reduce}(A)$ has 3

Complexity: $O(|A|)$ of $3 S U M$ to COLL collinear points. Let those points be $\left(x, x^{3}\right),\left(y, y^{3}\right),\left(z, z^{3}\right)$
Since they are coll, $\frac{y^{3}-x^{3}}{y-x}=\frac{z^{3}-x^{3}}{z-x}$
Ex. Pore that $x+y+z=0$

LIS $\leqslant L C S$

LIS(A,k): length of the longest increasing subsequence in A has length k
LCS(B,C,m) : length of the longest common subsequence in B and C has length m
def LIStoLCS(A,k):
???
return (B,C,m)

Lemma: LIS(A,k) is true if and only if $\operatorname{LCS}(\mathrm{B}, \mathrm{C}, \mathrm{m})$ is true.
(a) It G can be colouredusing 3 colours then Reduce (G) can be coloured using 4 colour. (b) If Reduce (G)" " " " " 4 " " v " "3 colours. COLOR <4 COLOR 3 colours, then Reduce (9) canst 3COLOR(G): Can G be coloured using at most 3 colours? 4COLOR(G): Can G be coloured using at most 4 colours? Q: Reduce 3COLOR to 4 COLOR. input to reduction: graph def 3COLto4COL(G):
// Try 1: return G @ holds, (b) does not hold
// Try 2: colour G using 3 colours. Then what?

I/ Try 3: ???
Lemma: G can be coloured using 3 or less colours ff $\mathrm{H}=3 \mathrm{COLto4COL}(\mathrm{G})$ can be coloured using 4 or less colours.
$7 y 2$ Reduce (8
Try 2 def Reduce (G) $\overrightarrow{0}_{0}^{n} m$ vertices
\rightarrow For all possible assignment of 3 colons to vertices of G :

Try 3 : Consmuct H which wa copy of 6 Add a news veter s to 19 add edge from to all otter vertices. retum A.(a) hopis?
(b) If G cannot be coloured using 3 colours,
if the colouring is valid: output of
(a) holds [If G has a valid 3cotroung Reduce (G) = can be coloured using
4 colours

Reduce $(G)=$ cant be coloured using 4 colour.
Complexity: $O\left(3^{n} \times m\right)$ Not poly $(|G|)$

